JDLAèªå®Gæ€å®ã»Eè³æ Œ - äœéšèš
ã¯ããã«
æšä»DXïŒããžã¿ã«ãã©ã³ã¹ãã©ãŒã¡ãŒã·ã§ã³ïŒãæµè¡ã£ãŠããŸãã ç§ãDXã«ããããä»äºãããããšæã£ãŠãèªäž»çã«ããŒã¿ãµã€ãšã³ã¹ãæ©æ¢°åŠç¿ã®å匷ãé²ããŠããŸããã å匷ããŠè²ã ãšå®åãã€ããŠãããšæãã®ã§ãããè³æ Œã欲ãããªã£ãŠããŸããã
æè¿ã®ãã£ãŒãã©ãŒãã³ã°ã®æµè¡ãç¥ãè¯ãæ©äŒãšæãã JDLAïŒæ¥æ¬ãã£ãŒãã©ãŒãã³ã°åäŒïŒ ãèªå®ããŠãããGæ€å®ïŒãžã§ãã©ãªã¹ãïŒãšEè³æ ŒïŒãšã³ãžãã¢ïŒã®è³æ Œã«ææŠããŠã¿ãŸããã[1] ãã£ãããªã®ã§ãäœéšèšã綎ã£ãŠãããããšæããŸãã
[1] | æè¿èšäºãæŽæ°ãããŠããªãã£ãã®ã¯ãå匷ã§å¿ããã£ãããã |
Gæ€å®
Gæ€å®ãšã¯ã
ãã£ãŒãã©ãŒãã³ã°ã®åºç€ç¥èãæããé©åãªæŽ»çšæ¹éã決å®ããŠãäºæ¥æŽ»çšããèœåãç¥èãæããŠããããæ€å®ããã
ãã®ãšå ¬åŒãµã€ãã«èšèŒãããŠããŸãã 深局åŠç¿ãã¯ãããšããæ©æ¢°åŠç¿ã®æè¡ã®æŠèŠãç¥ã£ãŠããŠããããŒãžã¡ã³ãã§ãã人æã§ããããšã瀺ãè³æ Œã§ãã 120åã®è©Šéšæéã«220åã®éžæåé¡ã«åçããŸãã èªå® åéšãã§ããã®ã§ãWEBæ€çŽ¢ã«ããã«ã³ãã³ã°ãïŒå®è³ªïŒå¯ã§ãã
Eè³æ Œ
Eè³æ Œãšã¯ã
ãã£ãŒãã©ãŒãã³ã°ã®çè«ãç解ããé©åãªææ³ãéžæããŠå®è£ ããèœåãç¥èãæããŠããããèªå®ããã
ãšå ¬åŒãµã€ãã«èšèŒãããŠããŸãã ãã¡ãã¯æ·±å±€åŠç¿ã»æ©æ¢°åŠç¿ãå®éã«éçšã§ãã人æãèªå®ããè³æ Œã§ãã æéã¯åãã120åã§éžæåé¡ã«åçããŸãããæ©æ¢°åŠç¿å šè¬ã®ç¥èã«å ããŠæè¿ã®æ·±å±€åŠç¿æè¡ã®æŠèŠãããã°ã©ã ã®ç¥èãå¿ èŠã«ãªã£ãŠããŸãã ãŸããè©ŠéšäŒå Žã§åéšããå¿ èŠããããŸããåœç¶ã§ãããã«ã³ãã³ã°ã¯ã§ããŸããã
å匷åã®çµéš
æ©æ¢°åŠç¿ã®ç¥èãŒãããŒã¹ã§å匷ãå§ããããã§ã¯ãªãã®ã§ã åéšæ±ºææç¹ã§ã®çµéšããŸãšããŠãããŸãã
æžç±ä»¥å€ã®åªäœãšããŠã¯äž»ã«Udemyã掻çšããŠããŸãã KIKAGAKUã®ååšã¯ãUdemyã§ã¯ãããŠç¥ããŸããã
Udemyã®KIKAGAKUåè¬å 容ã¯ãã£ãŒãã©ãŒãã³ã°ã®åçãªã©ã¯æããŠãããã®ã®ãEè³æ Œå¯Ÿçè¬åº§ã«æ¯ã¹ããšã æ¬æ Œçãªå¿çšã¯å«ãŸããŠããŸããã
ãŸããå šäœçã«éžãã åŠç¿å 容ã¯ãã€ãºæ©æ¢°åŠç¿ã«åã£ãŠããæãã§ããïŒããã¯ããã§ééããªã圹ã«ç«ã¡ãŸãããïŒ
Udemy
ãã€ãºæšå®ãšã°ã©ãã£ã«ã«ã¢ãã«ïŒã³ã³ãã¥ãŒã¿ããžã§ã³åºç€1
ãPythonãšStanã§åŠã¶ãä»çµã¿ãããããã€ãºçµ±èšåŠå ¥é
ããã«ã¬ã¯æµã人工ç¥èœã»æ©æ¢°åŠç¿ãè±ãã©ãã¯ããã¯ã¹è¬åº§ãåçŽç·š
ããã«ã¬ã¯æµã人工ç¥èœã»æ©æ¢°åŠç¿ãè±ãã©ãã¯ããã¯ã¹è¬åº§ãäžçŽç·š
ããã«ã¬ã¯æµãçŸå Žã§äœ¿ããChainerã«ãããã£ãŒãã©ãŒãã³ã°
ãã£ããèªãã æžç±
çµ±èšçæ©æ¢°åŠç¿ã®æ°ç100å
StanãšRã§ãã€ãºçµ±èšã¢ããªã³ã°
岩波ããŒã¿ãµã€ãšã³ã¹
深局åŠç¿ïŒæ©æ¢°åŠç¿ãããã§ãã·ã§ãã«ã·ãªãŒãºïŒ
ãã€ãºæ·±å±€åŠç¿ïŒæ©æ¢°åŠç¿ãããã§ãã·ã§ãã«ã·ãªãŒãºïŒ
ã¬ãŠã¹éçšïŒæ©æ¢°åŠç¿ãããã§ãã·ã§ãã«ã·ãªãŒãºïŒ
ã«ãŒãã«å€å€é解æ
è²»çš
Gæ€å®ã»Eè³æ Œã®åæ€ã«å¿ èŠãªè²»çšããŸãšããŠã¿ãŸããã
AI for everyone: 5357åïŒçšèŸŒïŒ
Gæ€å®åéšè²»çš: 13,200åïŒçšèŸŒïŒ=>9,240åïŒçšèŸŒïŒ
Eè³æ Œå¯Ÿçè¬åº§ïŒKIKAGAKU ãã£ãŒãã©ãŒãã³ã°ãã³ãºãªã³ã³ãŒã¹ïŒ: 77,000åïŒçšèŸŒïŒ
Eè³æ Œåéšè²»çš: 33,000åïŒçšèŸŒïŒ
åèš: 129,954åïŒçšèŸŒïŒ
ããã«åèæžè²»çšãå ãããšã ç·é¡14äžå匱ãšãã£ããšããã§ãã
Eè³æ Œã®åéšè³æ ŒãåŸãããã«ã¯ãJDLAèªå®ããã°ã©ã ã®åè¬ãå¿ èŠã§ãã Eè³æ Œå¯Ÿçè¬åº§ã®è²»çšã¯ãã³ããªã§ããããã®äžã§ãKIKAGAKUã¯å²ãšè¯å¿çãªæ¹ã ã£ããšæããŸãã Study-AIã¯æé¡å¶ã®å®ããã©ã³ããããŸããããUdemyã§KIKAGAKUã®è¬åº§ãåè¬ãã ãšãã«ãææžãã®ããŒãã䜿ã£ãè¬çŸ©ããšãŠãããããããã£ãã®ã§ãæçµçã«KIKAGAKUã«æ±ºããŸããã
DLããžãã¹ãæšé²ããŠããäŒç€Ÿã§ã¯åéšå¯Ÿçè²»çšãè² æ ããŠããããšãããããããã§ãããç§ã®å Žåã¯èªè ¹ã§ãã çµæ§ãªè²»çšãããã£ãŠããŸãããã³ããçŠã§ã©ãã«ããããªããã èªåã®æé·ã®ããã«æéãšãéãæè³ããŠãè¯ããšæããèªåãçŽåŸãããŸããã
ã¹ã±ãžã¥ãŒã«
åå¿é²ã®ãããæé軞ãæŽçããŠã¿ãŸããã 5æããã«èªåã®ãã£ãªã¢ãèŠçŽããŠãæ©æ¢°åŠç¿ã«é¢é£ããè³æ Œã®æ å ±åéãè¡ããŸããã
æåã¯Eè³æ ŒãšGæ€å®ã ããåããã€ããã§ããããçµäºãããšGæ€å®ã®åæ€æãå²åŒã«ãªãAI for everyone
ãšããcourseraã®è¬åº§ããããããããã¡ããåè¬ããŸããã çµæçã«ã¯AI for everyoneã®åè¬ã¯å®åãžã®å¿çšã®èŠ³ç¹ã§æ£è§£ã ãšæã£ãŠããŸãã åè¬åŸã¯Eè³æ Œå¯Ÿçã®è¬åº§ãé²ãã€ã€ãGæ€å®çŽåã«åèæžããã£ãŠã¿ããšããæãã§ãã Gæ€å®åŸã¯ã®ãã³ããããªã®åŸ©ç¿ãããŠããæãã§ããã
AI for everyone
courseraã®AI for everyone ã¯ãã£ãŒãã©ãŒãã³ã°çéã§æåããã ã¢ã³ããªã¥ãŒã»ã³å çãšæ±å€§ã®æŸå°Ÿè±å çã®è¬çŸ©ãšãã¹ããããªããŸãã ã¢ã³ããªã¥ãŒå çã¯ãšãŠãèãåããããè±èªã話ãããŸãããæ¥æ¬èªã®åå¹ãã€ããŠããã®ã§ã åŠç¿ã«äžèªç±ããããšã¯ãããŸããã§ããã 5~6æéãããã°èŠèŽã§ããã®ã§ã1é±éçšã§ç¡çãªãåè¬ã§ããŸããã å人çã«ã¯ã次ã®2ã€ã®ãããã¯ããšãŠãå°è±¡ã«æ®ã£ãŠããŸãã
ããžã¿ã«åãšãã£ãŠãdigitizationãšdigitalizationã®2ã€ããã
ã©ããªAIãããžã§ã¯ãããé²ããŠããã¹ãã
ãšãã«åŸè ã¯éèŠãªãã€ã³ãã ãšæããŸãã DXãé²ããŠãããªããããŒãã¡ã³ããŒãå«ããŠå šå¡ã«åè¬ããŠã»ããè¬åº§ã ãšæããŸããã
Gæ€å®
Gæ€å®ã«ã€ããŠã¯ãEè³æ Œãšå 容ããã¶ããšãããããã®ã§ãåºæ¬çã«Gæ€å®ã®ããã®å匷ã¯è©ŠéšçŽåã«ããããŠããŸããã
åèæž
åèæžã¯ã培åºæ»ç¥ãã£ãŒãã©ãŒãã³ã°Gæ€å®ãžã§ãã©ãªã¹ãåé¡éïŒç¬¬2çïŒãšããæ¬ã䜿ããŸããã ãšããã®ãã2021幎4æ15æ¥ã«Gæ€å®ã®ã·ã©ãã¹ãæ¹èšãããŠããŠãæ°ã·ã©ãã¹ã«å¯Ÿå¿ããåé¡éãšããã®ãããããããããªãã£ãããã§ãã 6/22ã«çºå£²ãšããã 7æã®è©Šéšã«äœãšãéã«åãããŸããæãæŒããã®ã§ããã
1éããã£ãŠã¿ãŠãäžæ£è§£ã ã£ãåé¡ã ããçããæèšããŠããã«2å埩ç¿ãããšããã¹ã¿ã€ã«ã§ãããŸããã 人åãæåãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ã¢ãã«ãäžå¿ã«ãé ã«å©ã蟌ã¿ãŸããã ãã ãã ãã®æ¬ã¯çµæ§ç°¡åã§ãããã«ã§ããŠããŸãã®ã§ããGæ€å®ã¯æ¥œåããšåéããããããšã«ãªããŸããã ãã®åé¡éãã®ãã®ã¯ã2~3æ¥ãããã°ã§ãããšæããŸãã
Study-AI
è©ŠéšçŽåã«ããå°ãè è©Šããããããšæããè©Šéšåœæ¥ã®æã«Study-AIã®ç¡æã®WEBåé¡éã«ç³ã蟌ã¿ãŸããã
ãããšãéåžžã®åé¡ã«å ããŠãæ°ã·ã©ãã¹å¯Ÿå¿ã®è¿œå ã®100åãšãããã®ãããã§ã¯ãããŸãããã ã©ãã©ããšæã£ãŠææŠããŠã¿ããã®ã®ããã£ã±ã解ããŸããã ããã¯ãŸãããšããããšã§ãè©ŠéšãŸã§ã®ååäžã®æéããã«ã«äœ¿ã£ãŠã æ°ã·ã©ãã¹å¯Ÿå¿ã®åé¡ãå¿ æ»ã«å匷ããŸãããïŒåã©ãä¿ã¯åŠ»ã«ãä»»ãïŒ
æ¬çªã§åæ§ã®åé¡ãåºããšãã«å¯Ÿå¿ã§ããããã«ã ãã©ãŠã¶ã®ã¿ãã倧éã«éããŠã Study-AIã®åé¡ãããæ€çŽ¢ã»é²èŠ§ã§ããããã«ããŠãããŸãããçµæçã«ãããåãå¥ããŸããã
è©Šéšã®ææ³
èªä¿¡ã®ãªãåé¡ã®èŠçŽããã§ããããã«ãåé¡ã«ãã§ãã¯ãä»ããããŸãã ãã ãæéã¯120åã§ããããåé¡æ°ãå€ãèŠçŽãã®äœè£ã¯ã»ãšãã©ãããŸããã§ããã ç¥ããªãäºé ã«é¢ããŠã¯ãWEBæ€çŽ¢ããããªããããã®ãå¿ é ã ãšæããŸããã ãŸããåé¡ã®é çªã¯ã·ã©ãã¹åéããšã«æ±ºãŸã£ãŠããããã§ã¯ãªããŠã©ã³ãã ã§ããã
Gæ€å®ã®çµæ
çµæã®ãŸãšããJDLAå ¬åŒãµã€ãã«èšèŒãããŠããŸãã 7450ååéšããŠ4582人åæ Œããããã§ããåéšè æ°ãšåæ Œè æ°ã®è©Šéšæ¯ã®æšç§»ãã°ã©ãåããŠã¿ãŸããã
"/home/runner/work/hanafsky.github.io/hanafsky.github.io/__site/assets/blog/jdla/code/output/hist.svg"
2020幎ã®2åç®ã¯ããããšäººæ°ãå€ãã®ã§ããã ããã¯ã³ããèªç²æéã«åéšæãåé¡ãšããããã®ããã§ãã åéšè æ°ã®äŒžã³ã¯éåããŠããããã«ãèŠããŸãããDX人æã®éèŠãããã®ã§ããŸã 䌞ã³ãŠããã§ãããã
ã¡ãªã¿ã«ç§ã¯åæ Œã§ãããäœãšãã©ã®ã·ã©ãã¹åéã§ã8~9å²ã¯æ£è§£ã§ããŸããã æ°ççµ±èšã®å¹³åç¹ã¯äœãã£ãã®ã§ãããå°éã«å匷ããŠãã貯éã®ããããã ä»åéãšåæ§ã®åŸç¹çã§ããã
ã·ã©ãã¹åé | å¹³ååŸç¹ç | ç§ |
---|---|---|
人工ç¥èœãšã¯ã人工ç¥èœããããååã人工ç¥èœåéã®åé¡ | 78% | 85% |
æ©æ¢°åŠç¿ã®å ·äœçææ³ | 65% | 95% |
ãã£ãŒãã©ãŒãã³ã°ã®æŠèŠ | 66% | 90% |
ãã£ãŒãã©ãŒãã³ã°ã®ææ³ | 62% | 84% |
ãã£ãŒãã©ãŒãã³ã°ã®ç€ŸäŒå®è£ ã«åã㊠| 67% | 87% |
æ°çã»çµ±èš | 56% | 83% |
æ¥çš®å¥ã®å²åãèŠãŠã¿ãŸããç§ã®å±ãã補é æ¥ã¯13%ãšããããã®å²åãå ããããã§ãã
è·çš®å¥ã§ã®åæ Œè å²åãã¿ãŠã¿ããšããžã§ãã©ãªã¹ãæ€å®ãšã¯ããã åããããããã§ãããšãã«ç 究éçºã»æ ã·ã¹äžå¿ãšããå°è±¡ãæã¡ãŸããã æãããŸãã¯ç»ç«éãšããŠGæ€å®ãåããŠã¿ãããšããæè¡è ãå€ãã®ãããããŸããã
Eè³æ Œ
ããããã¯Eè³æ Œé¢é£ã®äœéšèšã§ãã
ãã£ãŒãã©ãŒãã³ã°ãã³ãºãªã³ã³ãŒã¹
ãã®ã³ãŒã¹ã®ç³ã蟌ã¿æã«ã泚ææžã㧠8æã®Eè³æ Œåéšãç®æãæ¹ã¯ã6æäžã«ãã®ã³ãŒã¹ãä¿®äºãããããšããªã¹ã¹ã¡ããŸãã¿ãããªããšãæžãããŠããŠæ©ãå§ããªããšãããªããªãšæããŸããã
6æäžæ¬ã«ç³ã蟌ãã ãšãã¯ãæ¯èŸŒåŸæ°æ¥çµã£ãŠãã³ãŒã¹ãç»é²ãããåé¡ã«æ¶ã ãšããŠããŸããã ãã³ããåãããŠãã©ãŒã ã§åãåããããããšãããæ©æã«ããããããããã«ç»é²å¯Ÿå¿ãããŠãããã®ã§ãå©ãããŸããã
ãã®ã³ãŒã¹ã¯Google Colabç°å¢ãå©çšããŠã Pytorchã»TensorFlowã«ãã深局åŠç¿ã®æŒç¿ãè¡ããã®ã§ããã[2] ãããã£ãŠãç°å¢æ§ç¯ã®æéããããã«ãã¿ãŸããã
æŒç¿ã§ã¯å®éã«æ·±å±€åŠç¿ã¢ãã«ãäœã£ãŠãåŠç¿ãšäºæž¬ãè¡ããŸããã æ£ççãç®æšå€ãè¶ ããªããšã¯ãªã¢ã§ããªãä»çµã¿ã«ãªã£ãŠããŠããŸããã«åãçµãŸãªããšåæ Œã¯å€§å€ã§ãã
ç»åã®åé¡ãã¡ã€ã³ã§ããããæç³»å解æãèªç¶èšèªåŠçã®å 容ãæ±ã£ãŠããŸããã
PytorchãšTensorFlowã§æŒç¿åé¡ã¯å ±éããŠããã®ã§ãã©ã¡ããã®ãã¬ãŒã ã¯ãŒã¯ã§ã¯ãªã¢ããã°ã ããçæ¹ã®åé¡ãåçå¯èœã§ããããã°ã©ãã³ã°ä»¥å€ã®è¬çŸ©å 容ã¯å ±éããŠããã®ã§ã2é±ç®ã¯2åéã§åè¬ããŸããã
ãã®è¬åº§ã¯3æ¥éã®éäžè¬çŸ©åœ¢åŒã§åè¬ããããšãã§ããŸãããããªããªããŸãšãŸã£ãæéãåããªãã£ãã®ã§ãe-learning圢åŒã§åè¬ããŸãããã ããã1æ¥2æéã®ããŒã¹ã§2é±éã»ã©éäžããŠåãçµã¿ãŸããã
[2] | æ°å¹Žåã«pythonãåæ¥ããŠjuliaã«å®å šç§»è¡ããã¯ãã ã£ãã®ã§ãããpythonã«æ»ã£ãŠããŠããŸããŸããããã®pythonãããã¡ã¯ãã¹ã¿ã³ããŒãã«ãªã£ãŠããç¶æ³ã¯äœãšããªããªããã®ããšããã¡juliaæšããšããŠæ©ãã§ããŸããŸããã¡ãã£ãšåã¯juliaboxãšããç¡æã®ãµãŒãã¹ããã£ããã§ãããä»ã¯æåã®julia-hubãããªããã§ãããã |
Eè³æ Œå¯Ÿçè¬åº§
KIKAGAKUã§ã¯ãã®Eè³æ Œå¯Ÿçè¬åº§ãåè¬ããŠãEè³æ Œäºå確èªãã¹ãã«åæ ŒããããšãEè³æ Œåéšã®ããã®æ¡ä»¶ãšãªã£ãŠããŸããã ãã®åéšè³æ Œã8æã®åéšãŸã§ã«ååŸããããã«ã¯ã7/30ãŸã§ã«äºå確èªãã¹ããçªç Žããå¿ èŠããããŸããã ã ãããããããªãåéã§èŠãªãããã¹ããããªãäœæ¥ã1æ¥1~2æéçš3é±éè¡ã£ãŠãããšæããŸãã ïŒå€å°åæ¥ã«ãŸãšããŠãããŸãããïŒ
8æã®éããæ¹ïŒEè³æ ŒåéšãŸã§ïŒ
åæ Œè ã³ãã¥ããã£
8/7ã«éãããGæ€å®ã»Eè³æ Œåæ Œè ã®äŒã«ZOOMã§åå ããŸããã æŸå°Ÿå çã®ãè¬æŒã«å ããŠãä»ç€Ÿã§ã®DLãžã®åãçµã¿ç¶æ³ãªã©ãæèŽã§ãã貎éãªæ©äŒã§ããã
Gæ€å®ã»Eè³æ Œåæ Œè éå®ã®CDLEãšããåæ Œè ã³ãã¥ããã£ã«ãåå ããããšãã§ããŠã Slackã§è²ã ãªæ å ±ãåéã§ããããã«ãªããŸããããã ãã§ãGæ€å®ååŸã®å€§ããªã¡ãªããã«ãªãããšæããŸããã
å¯éŒ»è ç
å€äŒã¿ã¯å·æ¿ã«ããããã®ãã錻氎ãæ¢ãŸããããŸãéäžããŠå匷ã§ããŸããã§ããã æŸçœ®ããŠããã奥æ¯ãçã¿åºããã®ã§ãè³éŒ»ç§ãå蚺ãããšããå¯éŒ»è çãšèšºæãããŸããã Eè³æ Œ1é±éåã«ã¯äœãšãçç¶ããããŸããæ°ãåãçŽããŠåŸ©ç¿ã§ããããã«ãªããŸããã åºæ¬çã«ã¯å¯Ÿçåç»ã®åŸ©ç¿ãšäºå確èªãã¹ãããã£ãŠããŸããã äºå確èªãã¹ãã¯ãšãã«åœ¹ã«ãã£ããšæããŸãã åèæžã¯åŸ¹åºæ»ç¥ã®Eè³æ Œçãè²·ããŸããããã»ãšãã©ããäœè£ã¯ãããŸããã§ããã6000åãããããã®ã§ãæ£çŽã«ãããšè²·ããªããŠãè¯ãã£ãããªãšæã£ãŠããŸãã
Eè³æ Œã®ææ³
è©Šéšã¯Gæ€å®ã«æ¯ã¹ãŠåé¡æ°ã¯å°ãªããããçšåºŠæéã«äœè£ãæããŸããã èšç®çšçŽã«ã¯ããžãã¯ãã³ã§ãããã©ãããŒããã£ã«ã ãããããŸããé»åã¯PCã®ã¢ããªã䜿ããŸãã äžæºã ã£ãã®ã¯ããã¹ãã»ã³ã¿ãŒã®ç«¯æ«ã®ç»é¢ã暪é·ã«åŒã延ã°ãããŠããŠæåãèªã¿ã¥ããã£ãããšã§ãã ãããªãã«æãããã¯æããŸããããåºæ¥ã®ã»ã©ã¯ããããããŸããã§ããã
Eè³æ Œã®çµæ
ãããªãã®æããããããããŸããã§ããããäœãšãåæ Œããããšãã§ããŸããã 深局åŠç¿ã®åŸç¹é åçã50%ããããšããããšãåŸã§ç¥ããæ£çŽã®ãªã®ãªåãã£ãããªãšæã£ãŠããŸãã å€å深局åŠç¿ã®ç¹ãäœãã£ãã®ã¯ã深局åŠç¿ã®ãã«ã¹ã¯ã©ãããããŸãçå£ã«ãã£ãŠããªãã£ãã®ãåå ããšæããŸãã
ã·ã©ãã¹åé | å¹³ååŸç¹ç | ç§ |
---|---|---|
å¿çšæ°åŠ | 67.16% | 100 ïŒ |
æ©æ¢°åŠç¿ | 73.49% | 89 ïŒ |
深局åŠç¿ | 63.84% | 59 ïŒ |
éçºç°å¢ | 66.54% | 71 ïŒ |
次ã«Eè³æ Œã®åæ Œè æ°ã®æšç§»ãèŠãŠã¿ãŸããGæ€å®ã«æ¯ã¹ããšåéšè³æ Œã®éŸå€ãé«ãããããªããªãæ¯éå£ãå°ãªãã§ãã 2021ã®1åç®ã¯2020ã®2åç®ãäžæ¢ã«ãªã£ããããã倧ããå¢ããŠããŸãã å šäœçã«ãé 調ã«åéšè æ°ãå¢å ããŠãããšèšããã§ããããåæ Œè ã®å²åã¯å€§äœ7å²çšã®ããã§ãã
"/home/runner/work/hanafsky.github.io/hanafsky.github.io/__site/assets/blog/jdla/code/output/hist2.svg"
æ¥çš®å¥ã®å²åãèŠãŠã¿ããšãGæ€å®ãšããŸãå²åã¯å€ãããŸãããã éèã»ä¿éºæ¥ãäžåç£æ¥ã®å²åãGæ€å®ãããäžãã£ãŠããã®ãç®ã«ã€ããŸããã å®åãšããŠæ·±å±€åŠç¿ãå¿ èŠãšããŠããæ¥çš®ãç®ç«ã£ãŠããæ§åã§ããã
è·çš®å¥ã§ã®åæ Œè å²åãã¿ãŠã¿ããšãéåæ°ãç 究éçºãšæ å ±ã·ã¹ãã ã§å ããŠããããã§ããã Gæ€å®ã§ã®åŸåãããé¡èã«ãªã£ããšããããã§ãã ãããŒãžã£ãŒä»¥äžã®ã¬ãã«ã§ãã®è³æ ŒãååŸããã®ã¯çžåœãªããæ°ãå¿ èŠã ãšæãã®ã§ã ä»åŸãè·çš®å¥åæ Œè å²åã®å€§ããªå€åã¯ç¡ãããã«æããŸããã
ãŸãšã
ãããŸã§ã®ãã€ã³ãããŸãšããŸãã
AI for everyone(cousera)ã¯æ¬åœã«çããåããã»ããè¯ãã
Gæ€å®ã®åžè²©ã®åé¡éã ãã ãšç°¡åããããStudy-AIã®æ°èª²çšåé¡ã¯åœ¹ã«ç«ã£ãã
Eè³æ Œåæ Œã«ã¯ã äºå確èªãã¹ããéèŠïŒãã ããKIKAGAKUã®å ŽåïŒã
Eè³æ Œã®ã·ã©ãã¹ãGæ€å®ã«ãäžéšå ±éããŠããã®ã§ããŸãšããŠå匷ããã®ãå¹ççãïŒã¹ã±ãžã¥ãŒã«ã¯å°ã ã¿ã€ãïŒ
Gæ€å®ã»Eè³æ Œã«åæ Œãããš åæ Œè ã³ãã¥ããã£ã«å ¥ãããåæ Œè éå®ã®æ å ±ãè²ã ãšéãŸã£ãŠããã®ã§äŸ¿å©ã
Gæ€å®ã»Eè³æ Œã«åãã£ãã®ã§ãããã深局åŠç¿ã掻çšããèšäºãæžããŠã¿ãããšæããŸãã 次ã¯çµ±èšæ€å®ã§ãåããŠã¿ãŸããããããã§ã¯ã
ãã§ãããã§ãã